Guiding Network Analysis using Graph Slepians: An Illustration for the C. Elegans Connectome

نویسندگان

  • Dimitri Van De Ville
  • Robin Demesmaeker
  • Maria Giulia Preti
چکیده

Spectral approaches of network analysis heavily rely upon the eigendecomposition of the graph Laplacian. For instance, in graph signal processing, the Laplacian eigendecomposition is used to define the graph Fourier transform and then transpose signal processing operations to graphs by implementing them in the spectral domain. Here, we build on recent work that generalized Slepian functions to the graph setting. In particular, graph Slepians are band-limited graph signals with maximal energy concentration in a given subgraph. We show how this approach can be used to guide network analysis; i.e., we propose a visualization that reveals network organization of a subgraph, but while striking a balance with global network structure. These developments are illustrated for the structural connectome of the C. Elegans.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A distance constrained synaptic plasticity model of C. elegans neuronal network

Brain research has been driven by enquiry for principles of brain structure organization and its control mechanisms. The neuronal wiring map of C. elegans, the only complete connectome available till date, presents an incredible opportunity to learn basic governing principles that drive structure and function of its neuronal architecture. Despite its apparently simple nervous system, C. elegans...

متن کامل

The rich club of the C. elegans neuronal connectome.

There is increasing interest in topological analysis of brain networks as complex systems, with researchers often using neuroimaging to represent the large-scale organization of nervous systems without precise cellular resolution. Here we used graph theory to investigate the neuronal connectome of the nematode worm Caenorhabditis elegans, which is defined anatomically at a cellular scale as 228...

متن کامل

Topological Cluster Analysis Reveals the Systemic Organization of the Caenorhabditis elegans Connectome

The modular organization of networks of individual neurons interwoven through synapses has not been fully explored due to the incredible complexity of the connectivity architecture. Here we use the modularity-based community detection method for directed, weighted networks to examine hierarchically organized modules in the complete wiring diagram (connectome) of Caenorhabditis elegans (C. elega...

متن کامل

Analyzing Self-Similar and Fractal Properties of the C. elegans Neural Network

The brain is one of the most studied and highly complex systems in the biological world. While much research has concentrated on studying the brain directly, our focus is the structure of the brain itself: at its core an interconnected network of nodes (neurons). A better understanding of the structural connectivity of the brain should elucidate some of its functional properties. In this paper ...

متن کامل

Complexity and Vulnerability Analysis of the C. Elegans Gap Junction Connectome

We apply a network complexity measure to the gap junction network of the somatic nervous system of C. elegans and find that it possesses a much higher complexity than we might expect from its degree distribution alone. This “excess” complexity is seen to be caused by a relatively small set of connections involving command interneurons. We describe a method which progressively deletes these “com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1708.04657  شماره 

صفحات  -

تاریخ انتشار 2017